BULLETINS for APPLIED and COMPUTER MATHEMATICS (BAM)
Periodical of the Society

Pannonian Applied
Mathematical Meetings
Interuniversity Network in Central Europe

BAM-CX/2007, Nr. 2309
Proceedings of the PAMM - Conference
PC 152-153 June, B.almádi

SOME NEW NON-CLASSICAL TRIGONOMETRIES

106 Written by 109

M. Baica, M. Cardu
University of Wisconsin, S.C. Herbing S.R.L. Bucharest

Directed from the PAMM-Centre (1969)
by the Central Board & Editorial Staff
at the Budapest University of Technology
and Economics
1782

B.almádi BUDAPEST Göd (alsó)
Contents of this volume BAM-CX/2007, Nr. 2295-2315

Paper's author(s), University, Title, Nr Pages

2295. N. BOJA, "Politehnica" University of Timisoara: Movements of the Non-Euclidean Space Generated by Transvections .. 001-006

2296. V. F. DUMA, "Aurel Vlaicu" University of Arad: A Study of the Vignetting for the Telecentric Optical Systems ... 007-012

2298. S. SBURLAN, “Mircea cel Batran” Naval Academy, Constanta: Constructive Solution of Problems in Mechanics of Continua .. 020-031

2299. A. SKOBLAR, R. ZUGULIC, S. BRAUT, G. STIMAC, University of Rijeka: The Accuracy of Rules for Prediction of Local Vibrations in Steel Ships ... 032-037

2300. S. BRAUT, R. ZUGULIC, G. STIMAC, A. SKOBLAR, University of Rijeka: Full-Spectrum Analysis of the Rotor-Stator Rub Malfunction 038-043

2301. A. JURATONI, "Politehnica", University of Timisoara: On p-Semispectral Representations of Logmodular Algebras .. 044-054

2302. D. LANC, G. TURKALJ, G. VIZENTIN, University of Rijeka: An Algorithm for Numerical Creep Buckling Analysis of Beam-Type Structures ... 055-060

2303. R. NABERGOJ, University of Trieste, J. PRPIC-ORSIC, University of Rijeka: Attainable Ship Speed in a Seaway ... 061-066

2304. M. BRCIC, M. CANADIJA, J. BRNIC, University of Rijeka: Structural Model of Single Walled Carbon Nanotube ... 067-074

2305. J. BRNIC, G. VUKELIC, M. BRCIC, University of Rijeka: Discrete Optimization of a Platform for a Given Loads ... 075-080

2306. J. BRNIC, M. CANADIJA, G. TURKALJ, D. LANC, University of Rijeka: Response of Stainless Steel at Elevated Temperature – Short Time Creep Tests and Numerical Model ... 081-086

SOME NEW NON-CLASSICAL TRIGONOMETRIES

by

Malvina BAICA and Mircea CARDU

Abstract. In their previous papers the authors introduced some new Trigonometries as:
1) Quadratic Trigonometry (QT)
2) Polygonal Trigonometry (PT)
3) Trans Trigonometry (TT)
4) Infra Trigonometry (IT)
5) Ultra-Trigonometry (UT)
6) Extra Trigonometry (ET) and
7) Para-Trigonometry (PRT)
This time in this paper we perform a synthesis of all these Trigonometries and state some of their applications.

Keywords and phrases: Quadratic Trigonometry (QT), Polygonal Trigonometry (PT), Trans-Trigonometry (TT), Infra-Trigonometry (IT), Ultra-Trigonometry (UT), Extra Trigonometry (ET) and Para-Trigonometry (PRT)

1. Introduction

It is known that in the most technical domains and in the wave theory the oscillation character predominates and as such, in many cases these phenomena can be mathematically modeled using the trigonometric functions \(\sin \alpha \) and \(\cos \alpha \), respectively. Of course, there are many oscillation phenomena of which mathematical representation does not have a sinusoidal form and in their analysis using the Classical Trigonometry is useless.

In this case the decomposition of these functions in Fourier series is used in order to do the mathematical modeling needed. Therefore starting with this difficulty the authors felt the need to invent new non-classical trigonometries where the basic trigonometric figure specific to each individual non-classical trigonometry is going to overcome the above mentioned oscillation problem.

2. Previous authors results

It all started with the well known relation in the Classical Trigonometry (CT)

\[
\sin^2 \alpha + \cos^2 \alpha = 1 \tag{2.1}
\]

which for (QT) becomes

\[
\sin^2 \alpha + \cos^2 \alpha = 1 \tag{2.2}
\]

for (PT) is

\[
\sin^2 \alpha + \cos^2 \alpha = 1 \tag{2.3}
\]
All of the above trigonometries in the table are contained in the Para-Trigonometry (PRT) where k is less or equal with zero and greater or equal with infinity.

3. Applications of the Para-Trigonometry.

The toothed wheels are very often used in the domain of the machines and mechanical installations in the diverse transmission systems with chain, conveyers, elevators, the rolling systems with caterpillars and especially gearings. In function of their utilization the teeth profile have diverse geometrical forms.

The polar coordinates can be applied to define a complete denture of a toothed wheel mathematically with the paratrigonometric function named "paratrigonometric sinus" for four values of the paratrigonometric order k.

There are many graphs, which can be used in technology and they are obtained from giving to the order k some specific values. One can use these results of the Para Trigonometry as they please in modeling mathematically many applications problems.

4. Conclusions

i) The generic denomination of all these trigonometries including the Classical- Trigonometry is the PARA- Trigonometry (PRT), where 0≤k≤0. In another words, all these trigonometries can be comprised in the notion of the Para-Trigonometry.

ii) The basic relations and all the others from [6] can be applied in the case of all above mentioned trigonometries, distinguishing themselves by the domain of the values for the "order" k.

iii) The authors also believe that some computer programming can be developed to get some graphs of the curves in function of the order k.

REFERENCES