PARATRIGONOMETRIC FUNCTIONS RELATIVE TO THE FINITE SPIRALS AS THE BASIC TRIGONOMETRIC FIGURES

Malvina BAICA and Mircea CĂRDU

Abstract. In this paper we will examine the paratrigonometric functions, which are in relation with the Basic Trigonometric Figures (BTFs) of the finite spiral form developed in the trigonometric sense between the value of the vector radius ρ, from $\rho = 1$ to $\rho = 0$. The corresponding functions were defined "the spiral paratrigonometric Sinus of the angle α" (denoted Sp_α), "the spiral paratrigonometric Cosine of the angle α" (denoted Cp_α) etc.

It is worth to notice the similarity of the mathematical expression for the function Cp_α referred to the logarithmic Spiral as BTF, with the elongate equation for the amortized mechanical vibration.

1. Introduction

In [1] we analyzed the paratrigonometric functions represented in the chartesian coordinates and we showed the connection between these functions and The Basic Trigonometric Figures (BTFs). These last ones in their turn were also represented in the chartesian coordinates.

We also, recall that the fundamental relations in the Paratrigonometry are the following:

\begin{align}
|\text{Sp}_\alpha|^k + |\text{Cp}_\alpha|^k & = 1 \\
\text{tp}_\alpha & = \text{tg}\alpha
\end{align}

(1.1) (1.2)

where Sp_α is "the paratrigonometric sine of order k of the angle α", Cp_α is "the paratrigonometric cosine of order k of the angle α", and tp_α is "the paratrigonometric tangent of order k of the angle α". The order k can have values in the domain $0 \leq k \leq \infty$. Important particular cases are represented when $k = 2$ (The Classical Trigonometry – CT) and

MSC (2000): 26EXX; 78A99

Keywords and phrases: Paratrigonometry, Paratrigonometric Functions, Constant powers, variable powers
\(k = 1 \) (The Quadratic Trigonometry- QT).

The relation (1.2) represents the „key” connection between PRT and CT; \(\tan \alpha \) is „the tangent of the angle \(\alpha \)” in the CT.

The Basic Trigonometric Figures (BTFs) of the corresponding paratrigonometric functions are in their turn expressed in chartesian coordinates by the relation:

\[|y|^k + |x|^k = 1 \]

(1.3)

In the CT (\(k = 2 \)) the corresponding BTF is a circle having its radius \(R = 1 \). In the QT (\(k = 1 \)) BTF is a rhombus with all its angles being right angles, which is inscribed in a circle of the radius \(R = 1 \). For any other values of \(k \) the BTFs are „rhombuses” with curved sides, which are convex for \(1 < k \leq \infty \) and concave for \(0 \leq k < 1 \).

All of the BTFs presently studied in regard with the PRT are symmetric with the chartesian coordinate axis Ox-Oz.

We intend to study further these non-symmetric BTFs corresponding to these axis. We will bring in our analyse those BTFs of spiral form, which develope between the coordinate point \((x_1; y_0) \), for \(\alpha = 0 \) and the point of the coordinates \((x_0; y = 0) \), for \(\alpha = 2\pi K \alpha \), \(K \) an integer (\(K = 1; 2\ldots \) etc).

Evidently, for the best representation of a spiral we are going to use the polar coordinates.

In [2] we used the polar coordinates to represent some paratrigonometric functions.

In what follows, we will analyze some paratrigonometric functions which are related with these BTFs under the form of finite spirals, that is that the spirals start and end in very well defined points in the coordinate system, as we have shown above.

2. Archimedian Spiral, Logarithmic Spiral and Parabolic Spiral having BTFs role in the Paratrigonometry.

The classical mathematical expression for the Archimedian Spiral in the polar coordinates is:

\[\rho = c \alpha \]

(2.1)

Where \(\rho \) is the polar radius, \(\alpha \) is the angle formed by the polar radius with the polar axis Op (see Fig.1) and \(c \) is a constant. In other words, the polar radius varies directly proportional with the angle \(\alpha \).
corresponding coordinates

\[\begin{align*}
(1.3) \quad & x = r \cos \theta, \\
& y = r \sin \theta,
\end{align*} \]

owing its radius by right angles, values of k the
1 < k ≤ \infty and

\[\begin{align*}
\text{T are symmetric} \\
\text{to the form, which } \\
\text{the point of} \\
\text{.. etc).}
\end{align*} \]

ing to use the

\[\begin{align*}
\text{trigonometric} \\
\text{functions which} \\
\text{is that the} \\
\text{system, as we}
\end{align*} \]

\[\begin{align*}
\text{Spiral in the} \\
\text{radius with the} \\
\text{polar radius} \\
\end{align*} \]

Fig.1. The Archimedean Spiral

We can see that the Archimedean Spiral, expressed in this way, starts
from the pole O (for \(\alpha = 0, \rho = 0 \)) and tends towards infinity (for \(\alpha = \infty, \rho = \infty \)).

In order to establish the expression for the polar radius which decreases
from \(\rho = 1 \) (for \(\alpha = 0 \)) down to \(\rho = 0 \) (for \(\alpha = 2\pi n \)), as we have shown above, we
will use for the corresponding spiral (which we name „finite”) the relation:
\[\rho = 1 - \left(\frac{\alpha}{2\pi n} \right) \quad (2.2) \]

where \(n \) represents the number of the complete spires (by \(2\pi \) rad. each)
developed between \(\rho = 1 \) and \(\rho = 0 \). In Fig.1, a such spiral is represented for
which \(n = 4 \). This spiral is developing in a trigonometric direction from \(\rho = 1 \) (for
\(\alpha = 0 \)) to \(\rho = 0 \) (for \(\alpha = 8\pi \)). For \(\alpha > 8\pi \) the polar radius \(\rho \) becomes negative and
this representation does not have any sense.

Another very well known spiral in Mathematics is the Logarithmic
Spiral. This one when the angle \(\alpha \) increases in a trigonometric sense is
represented by the relation:
\[\rho = c \cdot e^{m\alpha} \quad (2.3) \]

where \(c \) and \(m \) are constants greater than 0 (zero), and \(\alpha \) is the angle formed by
the polar radius \(\rho \) with the polar radius \(\rho_0 \), as we previously had shown. Since
we set the condition that for \(\alpha = 0 \) to have \(\rho = 1 \), from the relation (2.3) results
that \(c = 1 \) and the relation (2.3) becomes:
\[\rho = e^{m\alpha} \quad (2.4) \]
The polar radius \(\rho \) tends to 0 (zero) when \(\alpha \) tends to \(+\infty\). In other way saying, the pole \(O \) is the asymptotic pole where the spirale is approaching more and more for \(\alpha \) increasing to \(+\infty\), but \(O \) is never toched by the spiral. This "comes" from \(\rho = \infty \) when \(\alpha = -\infty \) and passes through the point \((\alpha = 0; \rho = 1)\), towards the pole \(O \), which can be theoretically toched for \(\alpha = +\infty \).

Compared with the previous situation (Archimedean Spiral) we accept that in function of the number of the spirals (of \(2\pi \) rad. each) from which we establish that the entire spiral is formed, the value of \(\rho \) is very small and we denote it by \(\Delta \rho \). In this case we have:

\[
\Delta \rho = e^{2\pi n}
\]

In order to determine \(m \) we take logarithm in the relation (2.5) and we obtain:

\[
m = -(\ln \Delta \rho)/2\pi n
\]

Because in every case \(\Delta \rho < 1 \) then the value of \(m \) will be positive.

Accepting \(n = 4 \), as in the Archimedean Spiral case, we have

\[
m = -(\ln \Delta \rho)/8\pi
\]

Considering for example, \(\Delta \rho = 0.025 \) we obtain \(m = 0.147 \).

A Logarithmic Spiral conform the relation (2.4) and having four spires \((n = 4)\) and thus \(m = 0.147 \), is represented in the Figure 2.

![Fig. 2. The Logarithmic Spiral](image)

A spiral with a similar form to the Archimedian Spiral is the one represented by the following equation:

\[
\frac{\rho}{\sin \alpha} = \frac{1}{c}
\]
other way saying, the
ting more and more
This „comes” from 1), towards the pole
Spiral) we accept
(2.5)
the pole
(2.6)
very small and we
(2.7)
having four spires

\[p = a \cdot a^p + b \]
(2.8)

Where \(a \), \(b \) and \(p \) are constant values.

Because the variable \(a \) is raised to a power (\(p \)), we name the
corresponding curve to be the „Parabolic Spiral”.

If in the relation (2.8) we make \(a = 0 \), then we get \(b = 1 \) (in order to have
\(p = 1 \)). If for \(a = 2\pi m \), we accept \(p = 0 \), then \(a = -(1/2\pi m)^p \). Thus the equation (2.8)
becomes:

\[p = 1 - \frac{a}{2\pi m}p \]
(2.9)

For \(p = 1 \) the relation (2.9) is identical with the relation (2.2). If we accept \(n = 4 \),
as above, the relation (2.9) becomes:

\[p = 1 - 0.0398a^p \]
(2.10)

The value for \(p \) can be chosen in such a way that the curve of the function \(p(a) \)
can mathematically model in a very accurate way a specific phenomenon (in
Physics, for example) which can be represented by the relation (2.10).

Fig. 3. The vector radius as a function of the angle \(\alpha \), \(p(\alpha) \), for diverse spiral.

In the Figure 3 we represent the curves for the function \(p(\alpha) \) expressed by the
above relations for \(n = 4 \).
Thus:
- The curve a (straight line), relation (2.2) for \(n = 4 \) and the relation (2.10)
 for \(p = 1 \), respectively.
- The curve b, the relation (2.4), for \(m = 0.147 \) corresponding to \(\Delta p = 0.025 \) - see relation (2.7);
- The curve c, relation (2.10) for \(p = 2 \);
- The curve d, relation (2.10) for \(p = 0.4 \).
The value \(p = 0.4 \) above was chosen by trying, so that the form of the curve \(d \) to be the closest to the form of the curve \(b \).

To some Basic Trigonometric Functions (BTF) having spiral forms, analyzed above, exist corresponding specific trigonometric functions, and this will be discussed in the next chapter.

3. The Paratrigonometric Spiral Functions.

We call the Paratrigonometric Spiral Functions (PSFs) those paratrigonometric functions, which are referred to BTFs with a spiral form. We will analyze those PSFs, which are correlated with the spirals presented in the previous chapter as BTFs.

We denote by \(S_{\text{psa}} \) the function "Spiral Paratrigonometric Sinus of the angle \(a \)" with \(C_{\text{psa}} \) the function "Spiral Paratrigonometric Cosine of the angle \(a \)" and with \(T_{\text{psa}} \) the function "Spiral paratrigonometric Tangent of the angle \(a \)."

Referring to the Figure 1, we see that \(S_{\text{psa}} \) is equal with the quotient between the magnitude of the line segment \(MM' \) and the vector radius \(p \). The function \(C_{\text{psa}} \) is equal with the quotient between the magnitude of the line segment \(OM' \) and the vector radius \(p \). Between these functions there are the following relations:

\[
(S_{\text{psa}})^2 + (C_{\text{psa}})^2 = p^2 \quad (3.1)
\]

\[
S_{\text{psa}} / C_{\text{psa}} = T_{\text{psa}} = \tan a \quad (3.2)
\]

We see that these relations are similar with the fundamental relations from the Paratrigonometry, which are in relation with the BTFs symmetric to the coordinate axis \(Ox-Oy \) [1]. There is also, a similarity of the relation (3.1) with the fundamental relation from the Classical Trigonometry (CT):

\[
\sin^2 a + \cos^2 a = 1 \quad (3.3)
\]

The distinction between these two relations consists from the fact that, in this case which we are analyzing now, in the right side of the equality instead of a constant (number 1) appears \(p \), which is an algebraic function of \(a \).

Also, from Figure 1 we observe that the functions \(S_{\text{psa}} \) and \(C_{\text{psa}} \) can be expressed by the functions \(\sin a \) and \(\cos a \) (and \(p \)) in this way:

\[
S_{\text{psa}} = p \sin a \quad (3.4)
\]

\[
C_{\text{psa}} = p \cos a \quad (3.5)
\]
In the form of the spiral forms, spirals, and this (PSFs) those spiral form. We presented in the

Fig. 4. The functions $C_{ps_A}(a)$ and $C_{ps_B}(a)$

Fig. 5. The functions $C_{ps}(a)$

In Figure 4
- a - for the Archimedian Spiral, as a BTF (see Figurae 1);
- b - for the Logarithmic Spiral, as a BTF (see Figure 2);

In Figure 5
- c - for the Parabolic Spiral (with $p=2$), as a BTF;
- d - for the Parabolic Spiral (with $p=0.4$), as a BTF.

It is interesting to remark that if we develop the relation (3.5), using for p the relation (2.4) which is characteristic to the Logarithmic Spiral, we obtain:
so that the form of the b) having spiral forms, tric functions, and this

tions (PSFs) those with a spiral form. We spirals presented in the
metric Sinus of the tric Cosine of the angle tangent of the angle α'.
ual with the quotient the vector radius ρ. The magnitude of the line functions there are the

\begin{align}
(3.1) \\
(3.2) \\
(3.3) \\
\end{align}

fundamental relations BTFs symmetric to the relation (3.1) with the
from the fact that, in the equality instead of ω.
Ps and Cps can be by:

\begin{align}
(3.4) \\
(3.5) \\
\end{align}

Fig. 4. The functions Cpsα and Cpsβ

Fig. 5. The functions Cpsα

In the Figures 4 and 5 the function Cps α is represented for the following situations:
In Figure 4
- a- for the Archimedian Spiral, as a BTF (see Figure 1);
- b- for the Logarithmic Spiral, as a BTF (see Figure 2);
In Figure 5
- c- for the Parabolic Spiral (with p=2), as a BTF;
- d- for the Parabolic Spiral (with p=0.4), as a BTF.
It is interesting to remark that if we develop the relation (3.5), using for ρ the relation (2.4) which is characteristic to the Logarithmic Spiral, we obtain:
We used the notation Cps\(\alpha \) in order to remark the fact that the Cps\(\alpha \) is to the reference for a Logarithmic Spiral (the index L), as BTF: by analogy, we will also use the notations Cps\(\alpha \) when we refer to an Archimedian Spiral (the index A), as BTS and respectively Cps\(\alpha \), when we refer to a Parabolic Spiral (the index P), as BTF.

The relation (3.6) is exactly the equation for the Amortized Oscilations from Physics and Mechanics respectively if we refer to the Mechanical Systems [3],[4].

It is known that, the mathematical expression which characterize the Amortized Vibrations is:

\[
x = x_0 \cdot \exp(-ht) \cdot \cos(\omega t + \varphi)
\]

(3.7)

where \(x \) is the elongation, \(x_0 \) is the vibrations amplitude, \(h \) is the amortization factor, \(t \) is the time, \(\omega \) is the pulsation (circular frequency), \(\varphi \) is the initial phase (diphasic). For simplification if we accept \(x_0 = 1 \) and \(\varphi = 0 \), we obtain the relation:

\[
x = \exp(-ht) \cdot \cos(\omega t)
\]

(3.8)

This relation is similar with the relation (3.6), if we consider \(x = Cps\alpha \), \(ht = m \alpha \) and \(\omega t = \alpha \), thus \(h/m = \omega \). In another words saying Cps\(\alpha \) can represent an amortized vibration, in the case when the physical characteristics of the vibration (\(h, t \) and \(\omega \)) are adequately transformed (as above) in the mathematical measures (\(\alpha \) and \(m \)), which appear in the relation (3.6).

Coming back to the Figures 3 and 4, we see that in the Figure 4 the symmetries enveloping curve "of the curve b represents the graphical expression of the relation (2.4).

This curve was traced for positive values only of the function Cps\(\alpha \). It is similar with the curve b of Figure 3. In the same way " the enveloping curve" of the curve d of Figure 5 represents the graphical expression of the relation (2.10), for \(p = 0.4 \) and it is similar with the curve d of Figure 3.

If we choose adequately the value of \(p \), as we have shown before, the curves b and d of Figure 3 are looking very close alike, even if they refer to the different BTFs namely, the Logarithmic Spiral and Parabolic Spiral, respectively.

From what we have shown in the previous chapters, we can take the following important conclusions:

4.1. In the Paratrigonometry [1] beside the Symetric Basic Trigonometric Figures (BTFs) we can use the asymmetric BTFs with respect to the coordinate axis Ox - Oy. In this paper we analyzed as BTFs the following finite spirals,
developed in the trigonometric sense with the values of the angle α between $\alpha = 0$ up to $\alpha = 2\pi K$ (where K is a positive integer number):
- Archimedian Spiral,
- Logarithmic Spiral,
- The spiral which we named "Parabolic Spiral"

The mathematical modeling of these spirals in this paper was done in the simplest possible manner such as by representing them in the polar coordinates. The spirals are developing from the polar radius $\rho=1$ towards $\rho=0$, even to $\rho=0$ or tending to this value (for the Logarithmic Spiral).

4.2. The Paratrigonometric Functions corresponding to the BTFs mentioned above (Spirals) denoted by Sp_a, Cps_a etc, are expressed by the product of the vector radius function which characterize the corresponding spiral $\rho(\alpha)$, and the trigonometric functions of the Classical Trigonometry (CT), $\sin\alpha$, $\cos\alpha$ etc.

4.3. The function $\text{Cps}_L\alpha$ referring to the Logarithmic Spiral (from where we have the index L) as BTF, coincide with the mathematical expression of the elongation in the case of the amortized mechanical vibrations.

References

[3]. SILAȘ GH., Mechanics – Mechanical vibrations, Didactical and Pedagogical Publisher, Bucharest, 1968 (in Romanian).

Malvina Baica
The University of Wisconsin
Dep.of Mathematical
and Computer Sciences
Whitewater, WI. 53190 U.S.A.
E-mail: baicam@uww.edu

Mircea Cardu
S.C.HERBING S.R.L.
9 Oetari Str.
Sector 2, Bucharest, Romania.
E-mail: mircea.cardu@herbing.ro